Hello!

- •Grab a whiteboard.
- •Write the formula for work on it.

This Week

- •M: Into to Work, Power and Energy.
- •T: Continue Work, Power and Energy.
- •W: Review for quiz.
- •R: Quiz.
- •F: Lab.

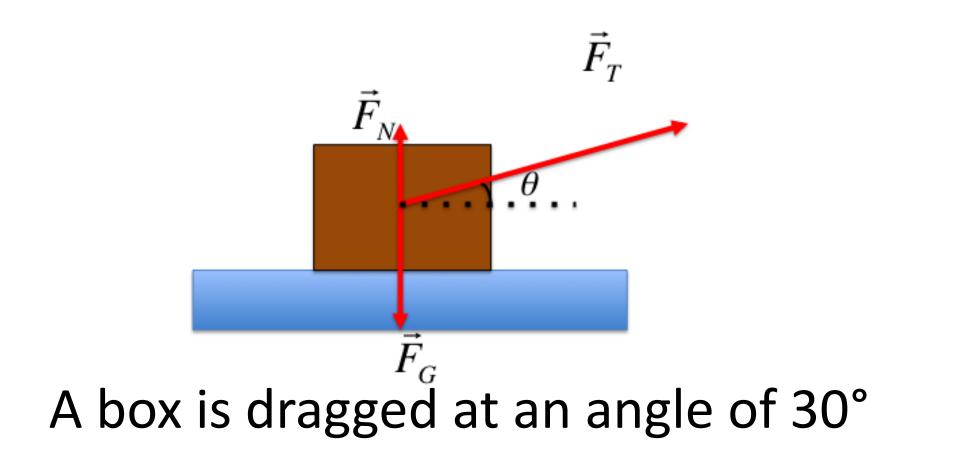
Homework Tonight

- Work and Energy WS
- •Energy and Springs WS
 - Selected problems depending on today's progress.

Work

- •When something is displaced by a force.
- •Work is only measured by the **component** of force in the direction of the displacement.
- •Formula: work = force x displacement x Cosθ.

Cosθ


- Θ: the angle between the direction of the force and the direction of the displacement.
- •If the force and direction are in the same direction, $\theta=0$.

A man pushes a car to the right

Gravity accelerates a skydiver.

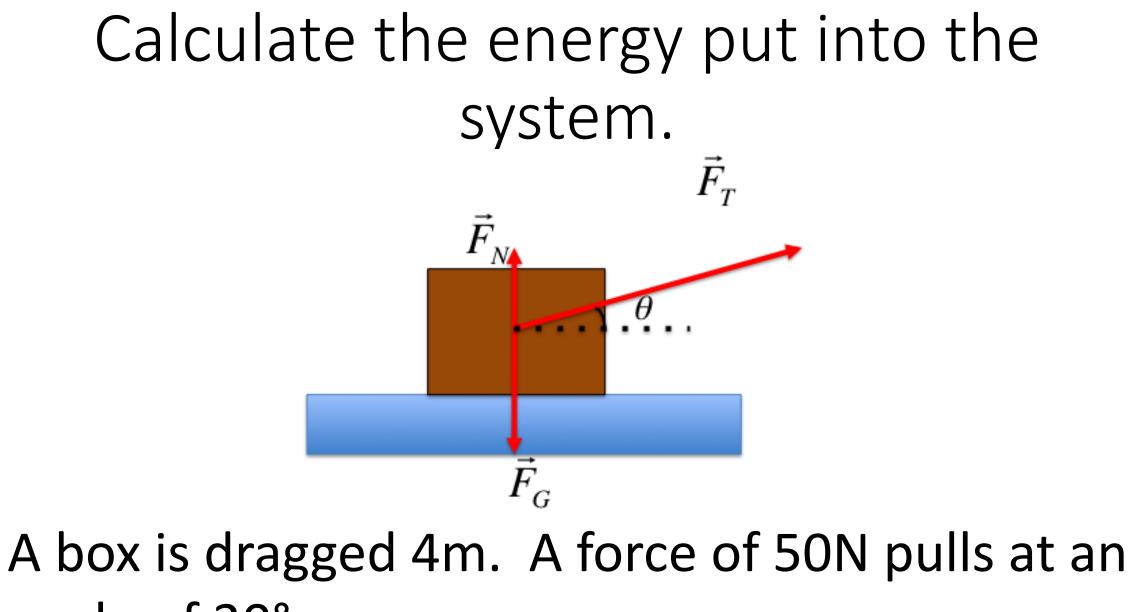
A server carries a tray across a restaurant

A man carries a briefcase up stairs

A rabbit skids to a stop

Work = $FDCos\theta$

- •W: work done on a system [Nm or joules]
- •F: the force applied [N]
- •D: the displacement [m]
- •Cos θ: ratio comparing the angle of force and displacement. [none]


Joules [J]

- •Metric unit of energy.
- •Defined in many ways:
 - •Newton Meters: Nm
 - •F=ma, so energy is also (kgm/s²)xm
 - •This becomes kgm^2/s^2
 - •Others to follow in later weeks.

Calculate the energy put into the system.

A man pushes a car with a force of 200N for 5m.

angle of 30°.

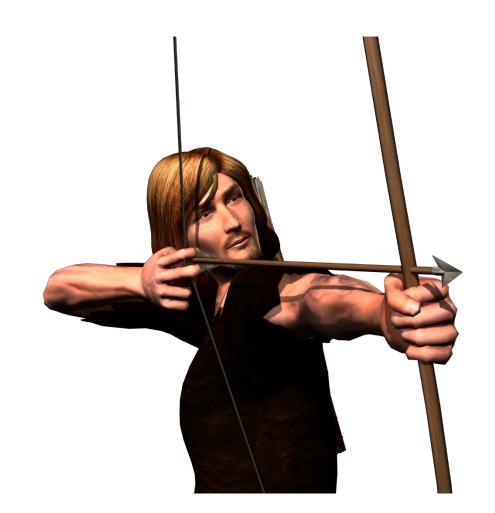
Calculate the energy put into the system.

A rabbit skids to a stop over 7m. The frictional force is 40N

Find some Work

- •You and your partner find an example of work that can be done around the room.
- •Describe the work done and calculate it.
- Present your findings to another lab group.
- •Allow them to calculate the work also.

Potential Energy


- •Energy stored in a system.
- •When released, there is a force that will do work.
- •This means that some kind of negative work has to be done.

Nature is Lazy

- •The system will want to be at the lowest energy level possible.
- •By "storing" energy in a system, we have the possibility of work being done later.
- •The system wants to be brought to is lowest energy level possible, releasing energy.

Potential Energy

- An archer draws a bow. By displacing the string, he stores energy in the system.
- •Energy in = energy out.

A spring is compressed 45cm with a force of 75N. What is the potential energy in the spring?

Gravitational Potential Energy

- By displacing an object vertically, you allow gravity to do work on an object.
- •GPE is mgh. Mass x gravity x height of displacement.

A busser carries a 10kg load of dishes up stairs. The dishes have a 3.5m vertical displacement and a 4m horizontal displacement. What is the potential energy put into the dishes?

A 3kg mass is dragged at a constant speed 6.5m across a floor. If μ =0.4, how much work does the pull on the object do?

Springs

- •The more that you compress a spring, that harder it becomes to compress.
- •The more compressed, the more force will be applied to an object that the spring applies to an object.

Hook's Law: Fspring=kx

- •F: the force that a spring will apply when released.
- •X: the displacement (compression) of the spring.
- •k: the spring constant.

The spring constant: k

- •The more compression on a spring, the more force the spring will apply.
- •k: N/m
- •If displacement doubles, force of the spring also doubles.
- •Linear relationship.

A force of 30N compresses a spring 2.5m. What is the spring constant?

The spring constant on a spring is 12N/m. Graph the displacement vs force over 5m.

Potential Energy on a Spring

- •Go to learningscience.org
- •Under physical science, select motion and forces.
- •# 5 is springs and things.

Activity 1

- Show energy of number 1.
- •Click ¼ time.
- •Hang the 50g mass on the first spring.
- •Observe the relationship between potential, kinetic energy and thermal.

Activity 2

- •Turn gravity and friction to zero.
- •Put time in real time.
- •Put the 250g mass on the spring.
- •Observe the relationship between kinetic and potential energy.